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ABSTRACT

A comprehensive treatment of statistical metrics for the
characterization of microwave device statistical data is
presented. The primary aim is to investigate the power of these
tests in their ability to faithfully delineate between like and
unlike Joint Probability Density Functions (JPDF). This paper
shows that adequate techniques are available to solve this
problem, and illustrates a novel application of these techniques
by distinguishing the statistical difference between two GaAs
FET data bases that have identical means, standard deviations,
kurtosis, skewness and correlations. Finally, we verify our
characterization approach by design centering a small-signal
amplifier, both with and without the use of statistically
characterized device data.

I. INTRODUCTION

Over the past two decades, a great deal of work in the
area of statistical design has been accomplished [1-4].
However, only a small fraction of this literature addresses the
accuracy of the statistical description used in the yield optimizer
[5-10]. Unfortunately, these works offer only crude (possibly
inaccurate), uncharacterized models of the underlying statistics.
Without objective and accurate characterization of input
parameter statistics, the outcome of the design is subject to
greater uncertainty, even with robust statistical optimization
algorithms. Spanos and Director were the first (with respect to
circuit design) to point out that a series of independent
univariate statistical tests will likely yield poor simulation
results [10]. They called for a multivariate test, i.e., a test that
will accept or reject the null hypothesis of moment equivalence
for all the variables at once. Realizing this, they worked
around the problem by using a simplified (locally linear) model.

In essence, the univariate tests (Kolmogorov-Smirnov,
mean, std. dev. kurtosis, skewness, Chi-squared, correlations,
etc.) are necessary but not sufficient indicators of moment
equivalence for JPDF's. Meehan and Collins provided evidence
of this by showing that two data sets of FET equivalent circuit
parameters, one measured and the other synthesized and having
identical distributions and correlations, produced sets of S-
parameters with different univariate test results [11].

The following section provides insight into the available
multivariate test statistics. Section III highlights an example
using one of the new multivariate tests with actual Foundry
GaAs FET data. Section IV presents a statistical design
example using both characterized and uncharacterized device
data. Finally, section V summarizes our findings.
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II. STATISTICAL TESTS FOR DEVICE
STATISTICAL DATA

For one dimensional data, there are several tests which
can distinguish two samples, such as the Chi-squared and
Kolmogorov-Smirov (K-S) tests. However, these tests either
do not scale directly to higher dimensions, or else they do not
have adequate "power" in higher dimensions. Two promising
solutions to this problem are those presented in Friedman [12]
(generalized K-S test) which use minimal spanning trees to
generalize one-dimensional tests to higher dimensions, and a
new approach based on nearest neighbor type coincidences
presented in Schilling [13] and Henze [14].

2.1 Generalized Kolmogorov-Smirnov Test. The
Kolmogorov-Smirnov test compares two sets of samples by
measuring the maximum deviation between the cumulative
distributions of the samples. In one dimension, the K-S test
works by ordering the combined samples, and measuring the
percentage of samples of the opposite type less than each
sample. The significant statistic is the maximum difference
between the percentage of samples from the opposite set which
are lower in order than a given sample.

In order to make the K-S test work in higher
dimensions, it is necessary to define an ordering on samples
which is meaningful in higher dimensions. In Friedman this is
done by using minimal spanning trees traversed in a "height
directed preorder” pattern [12]. A Spanning Tree is a non-
cyclic graph containing all points in the space. A Minimal
Spanning Tree is a Spanning Tree where the edges of the tree
are weighted by the distance between points, and the sum of the
weights is a minimum. The traversal of a MST is a recursive
algorithm as follows: visit the root of the tree; then traverse the
subtrees of the root in order of least to greatest maximum depth
of the subtree. The traversal of the Minimal Spanning Tree
defines an order which can then be used by the one-dimensional
K-S test. Algorithms for constructing Minimal Spanning Trees
can be found in most common algorithm books.

2.2 Nearest Neighbor Test. A new approach to
solving the two-sample problem for higher dimensions is
presented in Schilling [13] and Henze [14], and is based on the
number of nearest neighbor type coincidences. The basic idea
is to find the k nearest neighbors in the space according to a
given distance measure. A statistic is then computed by the
following formula {13]:

i=] r=] (1)
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where n is the number of samples, k£ is the number of nearest
neighbors, and Ii (r) is unity if the r'f nearest neighbor is of the
same type and zero otherwise. In Schilling, the asymptotic
distribution of the statistic is found to be gaussian for a
Euclidean distance measure [13]. In Henze, the asymptotic
distribution of the statistic is given for any distance measure
[14]. Henze's asymptotic distribution is somewhat more
complicated than Schilling's, and will not be discussed here.

III. MULTIVARIATE CHARACTERIZATION
OF FET DATA

In this example of statistical characterization, we use the
measured GaAs FET data from [15]. Using a careful synthesis
process, we produce another FET equivalent circuit parameter
data base having closely matched univariate statistics. It is
important to note that the synthesized model makes no
simplifying assumptions about the distributions or correlations -
these are very similar to those measured. Table 1 shows the
results from the univariate K-S test which indicate that the
distributions for the measured and synthesized data are
identical.

Ri -> Var 0 - K8 statistic = 0.015909 with confidence = 1.000000

Rds  -> Var 1 - KS statistic = 0.011818 with confidence = 1.000000
gm  ->Var2-KS statistic = 0.011818 with confidence = 1.000000
Cds  -> Var 3 - KS statistic = 0.010909 with confidence = 1.000000
Cgs ->Var4 - KS statistic = 0.012273 with confidence = 1.000000
Cdg -> Var 5 - KS statistic = 0.013182 with confidence = 1.000000

t -> Var 6 - K8 statistic = 0.013636 with confidence = 1.000000

Gdg -> Var 7 - KS statistic = 0.014091 with confidence = 1.000000

Univariate K-S test on measured vs. synthesized
FET parameter data sets.

Table 1

The correlation matrix for 88 measured devices:

Table 2 shows the pairwise correlation matrix for
measured and synthesized data, again with similar results.
When the multivariate test statistic (1) is used, we obtain a
confidence level (consult [13] for computational details on p;
and o;):

=0.99983.

k=8

(nk)% (Tkn — Uy )/Gk
erf] ( 3 ]

@

This indicates that we rgject the hypothesis that the
measured and synthesized data are the same, with a 99.98%
confidence level. This helps to explain the results given in [11,
15], where univariate characteristics of the measured S-
parameter data did not compare well with the synthesized S-
parameter characteristics, generated from the FET parameter
data as given above. If we examine scatter plots of the FET
data, we can appreciate why the multivariate test rejects Ho.
Figure 1 shows Ri vs. tau for a) the measured data set, and b)
the synthesized data set. It is easy to recognize areas where
combinatorial discrepancies are prevalent, yet there is excellent
agreement between the distributions and correlations involved.
This is the main theme: ¢nsembles of univariate test statistic
are not suitable for the characterization of muliivariate Join
Probability Density Functions.

The correlation matrix for 200 synthesized devices:

0 1 2 3 4 5 6 7
0 1.000
1 0487  1.000
2 0.068 0.597 1.000
3 -0.851 -0.454 -0.279 1.000
4 0259 0.601 0.820 -0.485 1.000
5 -0.067 -0.692 -0.165 -0.051 -0.144 1.000
6 -0.062 0233 0.080 0.048 0446 -0288 1.000
7 0.677 0.527 0.130 -0.629 0.082 -0350 -0403 1.0

0 1 2 3 4 5 6 7
0 1.000
1 0421 1.000
2 0.002 0.556 1.000
3 -0.809 -0.361 -0.185 1.000
4 0.266 0.555 0.750 -0.450 1.000
5 -0.065 -0.690 -0.178 -0.070 -0.067 1.000
6 -0.104 0204 0.020 0.145 0.363 -0274 1.000
7 0.637 0481 0.118 -0.621 0.086 -0.320 -0373 1.0

Table 2 Pairwise Correlations on measured and
synthesized FET parameter data sets.
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Figure 1 Scatter Plot of tau vs. Ri for a) measured,

and b) synthesized FET parameter data sets.



Finally, we exercised the multivariate test on the
synthesized FET data set "split in half." Thus, we would expect
this test would indicate that the data sets are from the same
population. This test indicated statistical equivalence with an
88% level of confidence.

Next we illustrate the implications of device statistical
characterization by design centering a single FET amplifier.

IV. DESIGN CENTERING WITH CHARACTERIZED
DEVICE DATA

The following example is taken from Purviance, et al.
[6]. The circuit and optimization specifications for this
example are given in Figure 2. Starting from the nominally
optimized component values as given in [6], design centering
using Touchstone™ [16] was performed twice using the
following assumptions on the FET model statistics: 1) use
multivariate characterized (measured) device data, and 2) use
univariate characterized device data. In other words, we use the
FET data sample sets from the previous section. The
designable parameters are zin, zout, ein, eout, lin, lout, 1sfb, and
are modeled as independent uniform variables with 10%
tolerance limits. Tables 3 and 4 summarize the results of this
centering exercise. Table 3 shows yield estimates derived from
5000 Monte Carlo trials. The yield estimates given use the
multivariate characterized (measured) data. Note that yield is
improved using both characterized and uncharacterized FET
data. However, we should point out that the designer using
multivariate characterized device data leaves much less to
chance. Another important result here is that both the yield
estimate and the design center are affected by the choice of
device statistics.

Optimization SPECS

S11 S22 S21
Nominal | <-10dB| <-10dB| =15dB
Yield <-8dB | <-8dB | <«16,>14dB

Figure 2 Single FET 3.8-4.2 Ghz. Amplifier used in the
Design Centering Example.
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YIELD (5000 trials - Monte Carlo)
Before Centering | After Centering
Univariate
characterization | 31.4% 50.1%
Multivariate
characterization | 31.4% 58.5%

Table 3  Yield estimates before and after design centering.

Parameter | Univariate Multivariate Delta %
characterization | characterization
zin 35.52Q 38.15Q 7.87
ein 83.78 deg 84.97 deg 1.42
lin 321nH 3.23nH 243
1sfb 0.55nH 0.57 nH 4.56
lout 7.88 nH 8.48 nH 7.56
zout 82.07 Q 86.05 Q 4.85
eout 93.60 deg 99.80 deg 6.62

Table 4 Design centering results for the single FET amplifier.

V. CONCLUSIONS

We have presented techniques for objectively
characterizing multivariate statistical device data. These tests
are straightforward to implement, and yield high power to
distinguish Joint Probability Density Functions with calculable
certainty. We have illustrated the application of these
techniques by distinguishing the statistical difference between
two GaAs FET data bases that have identical means, standard
deviations, kurtosis, skewness and correlations. Finally, we
verified our approach by design centering a small-signal
amplifier, both with and without the use of statistcally
characterized device data. The centering example shows that
not only yield estimates are affected by the accuracy of device
statistics, but also the design center.

These techniques should find extensive use not only in
statistical device characterization problems, but also in:

a) statistical process characterization [10],
b) statistical design algorithms [16], and

¢) statistical interpolation algorithms [17].
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